
B551 Homework 6

You will need the Python and data files contained
in hw6.zip, from the oncourse website.

Directions:
The problems below will ask you to implement three machine

learning
 strategies for a text classification problem on a Reuters news
dataset.
 (see readme.txt for more information about the framework
code).
 Type or write answers to written questions and hand them in,
hard-copy, in class.

Submission instructions:
When you are done, upload your classifiers.py (and any other

Python files you changed)
to OnCourse. Hand in your written answers in class.

IMPORTANT: MAKE SURE YOUR ONCOURSE SUBMISSION GOES THROUGH!
You may have to click

"Submit" more than once. You should receive an e-mail from
OnCourse

confirming your submission -- if you do not receive this e-
mail, then your

submission probably has not gone through and you should re-
submit or e-mail

one of the AIs to ask if they can see your submission!

I.

1. Implement the Naive Bayes classifier in the
NaiveBayesClassifier class in classifiers.py
 by implementing the train() and test_one() functions.
 For training, use a uniform class prior (rather than
performing ML on the class counts).
 Learn the MAP estimates of each feature probability given a
Beta prior of alpha=beta=2
 (i.e., 1 virtual count for both positive and negative
examples).

 Your test_one() function should work correctly even for

nonuniform class priors and different
 parameters for the Beta feature priors.

 2. Evaluate your classifier, where the positive examples are
given by the
 'earn' topic, and the negative examples are given by the
'acq,crude,gold' topics.

 Use the --trmax=N command line option to vary the number N
of examples in the
 training set by increments of 100 from N=100 to 1000. Plot
the accuracy on both the training set and
 test set against N. Include this plot in your answer
document (it should contain
 two learning curves, one for training set accuracy and the
other for testing set
 accuracy). What do you observe?

 3. Repeat the process of question 2, but use the --fsize=F
option to
 classify.py to vary the number F of features (words)
extracted from the
 documents with F=5, 10, 20, and 50. Plot the accuracy on
both the training
 set and test set against F as you did before. What do you
observe?

II.

1. Implement a decision tree learning algorithm in the
DecisionTreeClassifier class
 in classifiers.py, by implementing the
decision_tree_learning() and choose_feature()
 functions (train() and test_one() are already given). To
pick attributes to split
 on, you may use either the minimum error criterion given in
class, or the information
 theoretic criterion given in R&N p. 703-704. Do not
perform pruning.

 2. Same questions as I.2 using this classifier.

 3. Same questions as I.3 using this classifier.

III.

1. Implement a third classifier. Implement your learner
ThirdClassifier in classifier.py,

 and you may optionally implement any new feature extraction
techniques in
 FeatureExtractor() in utils.py. Describe your new
technique and your rationale for
 choosing it.

 Examples for possible techniques are decision tree pruning,
boosting with
 decision stumps, Bayesian networks. Or, you could tune
your existing
 learners.

 Extra credit will be awarded for the classifier with the
best results on a
 new classification task. Note that you will not be tested
on the same categories
 as in questions I and II, so make sure your techniques work
for different categories.
 We will also award EC for creative implementations.

